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Abstract
Recently time-reversal techniques have emerged as a new, important and
fascinating discipline within wave propagation. Many of the problems involved
can best be understood, analysed and optimized based on a random field
model for the medium. Here we discuss stable refocusing of second-order
time-reversed reflections. This phenomenon may appear as surprising at first.
However, we show how it can be understood in very simple terms viewing the
wavefield as a stochastic process. We give sufficient conditions on Green’s
function of the propagation problem for the phenomenon to happen. In
particular we discuss acoustic wave propagation in the regime of weak random
medium fluctuations and explicitly give the derivation of stable refocusing in
this case, illustrating it with numerical examples.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recently techniques based on time reversal of wavefields have received a lot of attention [8,9].
With time reversal we mean that the wave is recorded in time, like an acoustic signal on a
tape recorder, then re-emitted time-reversed, like playing the tape in reverse. Surprising and
fascinating physical effects can be synthesized in this way. Moreover, existing methods in,
for instance, communication, imaging and for solving inverse problems can be improved in
a fundamental way. The possibility of refocusing and super-resolution by time reversal has
applications in medicine, geophysics, non-destructive testing, underwater acoustics, wireless
communications, etc [3, 9, 10, 13].

In one kind of time-reversal experiment, a wavefield is recorded by an array of transducers,
time-reversed, and then re-transmitted into the medium. The re-transmitted signal propagates
back through the same medium and refocuses approximately at the original (localized) source
point for the wavefield. Time reversal and back-propagation thus acts as an approximate
inverse for the forward propagator of the wavefield. The refocusing is approximate because of
the finite size of the array of transducers (receivers and transmitters), the time-reversal mirror.
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In a homogeneous medium the re-focusing resolution of the time-reversed signal is limited by
the size of the time-reversal mirror and of the length to the mirror, the diffraction limit. When
the medium has random inhomogeneities the resolution of the refocused signal can, in some
circumstances, beat the diffraction limit, which is called super-resolution [4, 7].

In the above time-reversal experiments the sharpening of the refocal spot caused by random
fluctuations in the medium parameters is essentially a decoherence phenomenon. Only wave
energy sharply focused toward the source will be coherent enough to make up a strong stable
time-domain signal. In a second kind of time-reversal experiment the mechanism for generation
of a sharply focused pulse after time reversal can rather be understood as a statistical coherence
phenomenon. In this type of application there is no refocused pulse in the homogeneous
case. Yet, in a randomly heterogeneous environment a refocused pulse emerges at the original
(localized) source point. Moreover, despite the fact that the refocusing now is a purely statistical
phenomenon, the shape of the refocused pulse is non-random. Below we shall refer to this
phenomenon as stabilization. It is this second application of time reversal that we will analyse
in detail in this paper. In this case the time-reversal mirror is located at the original source
point and the received and time-reversed signal is sent back into the medium again rather than
back toward the source.

The two time-reversal scenarios outlined above share one condition for sharp stable
refocusing to occur: the presence of a separation of scales situation. It corresponds to the
wavefield fluctuating on a scale that is fine relative to the size of the time-reversal mirror. In
the next section we start the discussion of the second problem outlined above and explain this
in more detail. We discuss how refocusing can be understood as a matching or coherence
phenomenon and also illustrate it with some numerical experiments. In sections 3 and 4 we
analyse the refocusing phenomenon. Here we take Green’s function of the random medium as
our starting point and give the conditions that will lead to stable refocusing. In sections 5 and 6
we consider the particular case with acoustic waves. We analyse this in detail in the regime of
weak medium fluctuations and identify scaling scenarios that give a wavefield Green’s function
or propagator that results in stable refocusing. The results are illustrated with numerical
computations.

2. Illustration of focusing

2.1. Numerical example

In this section we present a numerical illustration of the refocusing of time-reversed reflections
in the case of acoustic waves propagating in one spatial dimension. The numerical simulations
are based on an equal travel time discretization of the medium, as in [15]. The acoustic medium
is randomly heterogeneous in the halfspace x > 0 with small zero mean fluctuations in the
wave speed.

The numerical experiment is conducted as follows. First, we let a narrow wave pulse
impinge upon the random medium. The wave reflected from the medium toward the source
point will be small and incoherent since medium fluctuations are small and random. We next
capture the signal in a time window centred at time t0, reverse it in time and send it back into
the medium. For one-dimensional acoustic wave propagation this corresponds exactly to

(i) capturing a spatial segment of the reflected signal travelling to the left at a particular time
instant;

(ii) ‘freezing’ this piece and sending it back into the heterogeneous medium as a secondary
right propagating source wave.
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Figure 1. This figure shows the refocusing at the original source point for the second-order
reflections from the random medium.

The second-order reflection generated by this new source is shown in figure 1, a time t0 after
we sent the signal into the heterogeneous medium. Note the focusing at the original source
point for these second-order reflections. This is what we referred to as refocusing above. The
refocusing is no coincidence. If we repeat the experiment with a different realization of the
random medium we will see essentially the same refocused pulse. This is what we referred to
as stable refocusing above. We next aim to describe qualitatively why this happens.

2.2. Response matching via time-reversal

To explain and quantify the focusing seen above we repeat the steps and illustrate it with some
schematic cartoons.

The medium is heterogeneous in a halfspace, the halfspace x > 0, and homogeneous in
the other half, as before. First we use an impulsive source located at the origin at time zero and
impinging upon the random medium, see figure 2 (top). The bottom plot shows the first-order
reflections from the random medium at time t0 (call them G(x)). Since we used an impulsive
source, the process G(x) can be interpreted as the impulse response function of the medium
or its random Green’s function. We refer to the scale at which G fluctuates as l. Thus, we
assume that G(x) and G(x + �x) are approximately independent if l � |�x| and strongly
correlated if |�x| � l.

We again consider acoustic wave propagation and, just as above, cutting out a time piece,
reversing this in time and sending it back into the medium corresponds to cutting out a spatial
segment of the reflected wave, freezing it and sending it back into the medium by reversing its
propagation direction. Thus, the trailing edge of the piece becomes the front when we re-emit
it. The new source is shown as a full line in the top plot of figure 3. The second-order reflection
is the convolution of the impulse response of the medium with this new source. However, the
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Figure 2. This figure illustrates the first-order reflections from an impulsive source. The top display
shows the impinging impulse travelling to the right in the homogeneous halfspace and impinging
upon the random or heterogeneous right halfspace. The bottom display shows the reflections,
random Green’s function or impulse response of the medium, evaluated a time t0 later. The part of
it that is shown with a full line is the part that corresponds to the window of width W , the segment
that we capture, time-reverse and send back into the medium.

source was just a piece of the impulse response or Green’s function itself. Due to the fact
that we time reversed before re-emitting the signal, the convolution corresponds to sliding a
piece of Green’s function along itself and forming a local ‘inner product’, as illustrated in
the middle display of figure 3. Evaluating the second-order reflection at time t0 at the spatial
origin corresponds to Green’s function and the piece being exactly coherent before we form
the inner product. Evaluating the reflection at time t0, but a distance more than l from the
origin corresponds to complete decoherence and a small inner product, thus giving re-focusing
(as in figure 3 (bottom plot)) of a pulse that is moving to the left. The support of the refocused
pulse will be O(l). To quantify the relative magnitude of the refocused pulse, assume that
Xn = G(nl) are zero mean, independently and identically distributed random variables. Let
also N = W/l with W the width of the window. The magnitude of the fluctuations relative to
the refocused pulse is then of the order of√

Var[
∑N

i=1 XiXi+�]

E[
∑N

i=1 X2
i ]

= O(N−1/2).

Thus, the focusing phenomenon in time reversal is due to the matching of two copies of the
response function of the (time-invariant) medium. It will occur when we have a separation of
scales, in that the window width is large relative to the scale at which the response function
decorrelates. The more detailed analysis carried out below confirms this picture.

3. Waves over a layered medium

3.1. Green’s function

We analyse the focusing phenomenon in a one-dimensional medium. The random
heterogeneous medium is located in the halfspace z > z0. In the homogeneous halfspace
we assume that the wave, u, can be decomposed as

u(t, z) = ul(t + z/c0) + ur(t − z/c0) for z � z0, (1)

with c0 being the wave speed.
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Figure 3. This figure illustrates the refocusing of the pulse. In the top display we show the source,
the part of the reflected signal shown with a full line in figure 2. The direction of propagation has
been changed and this piece is now impinging upon the random halfspace. The reflected signal
will now be determined by sliding this piece of Green’s function along itself and forming a local
inner product. This gives the refocusing seen in the bottom plot.

We start by making a transformation to travel time depth coordinate to simplify notation:
x = z/c, where c is the local speed. Then

u(t, x) = ul(t + x) + ur(t − x) for x � x0. (2)

Let the source or impinging waveshape be denoted by f . We assume a linear time-invariant
medium and that for ur(t) = f (t):

ul(t + x) =
∫ ∞

−∞
G(t + x − s)f (s) ds. (3)

Thus, we model the heterogeneous medium in terms of the properties of a surface Green’s
function G that relates the impinging and reflected waves as stated in (1) and (3). In the
next section we describe the time-reversal experiment and in section 3.3 we give the specific
assumptions that we make about Green’s function which lead to refocusing.

3.2. The time-reversal experiment

Denote the reflected wave process centred at time t0 > 0 for r:

r(τ, x) ≡ ul(t0 + τ + x) =
∫ ∞

−∞
G(t0 + τ + x − s)f (s) ds.



370 K Sølna

As described in section 2.1 we first use an impulsive source travelling in the positive x direction
with the medium being otherwise at rest. Second, we cut out a piece of the reflected signal and
use this piece ‘time reversed’ as our new source. The reflected wave for the impulsive source,
f1(t) = δ(t), is

r1(τ, x) = G(t0 + τ + x).

The second source pulse, f2(t), is

f2(t) =
{

r1(−t, 0) for |t | < W/2

0 else,
(4)

which corresponds to applying a uniform window function centred at t0 and width W . The
reflected wave associated with the secondary source f2 is

r2(τ, x) =
∫ ∞

−∞
G(t0 + τ + x − s)f2(s) ds =

∫ W/2

−W/2
G(t0 + τ + x + s)G(t0 + s) ds, (5)

which is the expression for the reflection process that is illustrated in figure 3.

3.3. Assumptions about Green’s function

We want to characterize the reflected process and compute first its mean and variance:

E[r2(σ, 0)] =
∫ W/2

−W/2
R(s; σ) ds

R(s; σ) ≡ E[G(t0 + s + σ)G(t0 + s)] (6)

Var[r2(σ, 0)] =
∫ W/2

−W/2

∫ W/2

−W/2
R2(s, v; σ) ds dv

R2(s, v; σ) ≡ E[X(s; σ)X(v; σ)]

X(s; σ) ≡ G(t0 + s + σ)G(t0 + s) − R(s; σ). (7)

Note that the reflected process is symmetric in space and time: r2(σ, 0) = r2(0, σ ).
Next, we make some assumptions about Green’s function, G, that characterizes the

reflected wavefield. We assume that G has mean zero and decorrelates for large offsets in
its argument (assumptions (A1) and (A2) below). Thus, the medium does not generate any
strong coherent reflections and the first-order reflections, r1, are zero in the mean. Due to rapid
decorrelation the second-order reflections, r2, will refocus to a coherent pulse as in figure 3.
The parameter l describes the scale at which Green’s function decorrelates. Assumption (A3)

ensures that the reflections do not ‘die out’ within the window of width W and (A4) that the
centred process X(s; σ) has a finite correlation length. The last two assumptions entail that
the random fluctuations in the refocused pulse are relatively small for l small:

(A1) E[G] = 0

(A2) lim
σ→∞ sup

s

|R(s; σ)| = 0

(A3) 0 < C1 < R(s, 0) for |s| < W/2

(A4) sup
s,σ

∫ ∞

−∞
|R2(s, v; σ)| dv = l < ∞.

Before we proceed, note that the above moments are not well defined for a singular Green’s
function associated with a medium generating strong reflections: however, this case can be
considered using slightly smoothed initial data as in section 3.7.
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3.4. Focusing in the mean

The above modelling trivially gives that the second-order reflection, r2, focuses (in the mean):

Result 1. The assumptions (A1,...,3) imply that ∀δ > 0 ∃ M > 0 such that

E[r2(σ, 0)]

E[r2(0, 0)]
< δ for σ > M.

Note that the focusing is symmetric in the space and time dimensions.

3.5. Separation of scales and stabilization

The modelling moreover easily gives that the random fluctuations in the reflection process are
small relative to the magnitude of the focused pulse for large relative window width. This is
what we refer to as stabilization:

Result 2. The assumptions (A1,...,4) imply that√
Var[r2(σ, 0)]

E[r2(0, 0)]
� 1

C1

√
N

with N ≡ W/l.

In the special case that G(t) and G(t + τ) are independent for |τ | > l, then (A2) and (A4) are
satisfied for R2 bounded. If, moreover, l � W the separation of timescales that we discussed
in the introduction is present and we get stable refocusing.

3.6. Local stationarity

In this section we introduce some additional assumptions to get a more precise characterization
of the focused reflections. We consider the case when the random fluctuations in r2 are rapid
relative to the window width, but when the statistics of the reflection process vary slowly relative
to this scale. Thus, the window width separates the micro- and the macroscale in the reflection
process. We make here the idealized stationarity assumption: the process G(t0 +s +σ)G(t0 +s)

is nearly stationary in s when observed for |s| < W . Then we find

E[r2(σ, 0)] =
∫ W/2

−W/2
R(s, σ ) ds ≈ WR(0, σ ) (8)

and approximately:
√

Var[r2(σ, 0)]

E[r2(0, 0)]
<

√∫ ∞
−∞ |R2(0, v; σ)|/(R(0, 0))2 dv

W
.

Thus, the shape of the refocused pulse is R(0, σ ), the covariance function of Green’s function
evaluated relative to the centre of the time window. The relative magnitude of the fluctuations
in the refocused pulse is bounded in terms of the correlation length of the process X relative
to the window width.

3.7. General source and window functions

Consider now the more general case with a smooth source function, f1(t) = f (t), supported
on an interval O(d) with d � W and normalized such that ||f ||1 = 1. Moreover, we introduce
a window function W(t), supported for |t | < W/2, so that the secondary source as in (4) is

f2(t) =
{

r1(−t, 0)W(−t) for t < W/2

0 else.
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In this case

r2(τ, x) =
∫ ∞

−∞
G(t0 + τ + x + s)W(s)

∫ ∞

−∞
G(t0 + s − v)f (v) dv ds

and

E[r2(σ, 0)] =
∫ ∞

−∞

∫ ∞

−∞
W(s + v)R(s, σ + v)f (v) dv ds. (9)

Under the stationarity assumptions of the previous section we find

E[r2(σ, 0)] ≈ [R(0, ·) � f (−·)](σ )

∫ ∞

−∞
W(s) ds (10)

with � representing convolution. If we then assume that Green’s function is mixing on the
scale l we find √

Var[r2(σ, 0)]

E[r2(0, 0)]
= O

(√
max(l, d)

W

)
.

Thus, the reflections focus at the origin for time t0. If l � d, then the support of the focused
pulse is approximately that of the source pulse and the relative fluctuations of the order of
O(

√
d/W).

4. Three-dimensional effects

We summarize how the focusing generalizes to a two- or three-dimensional (time-invariant)
medium. Analysis for a point source located over a layered medium is presented in [2].
An analysis of Green’s function for a locally layered medium is presented in [14]. The
heterogeneous random medium is located in the halfspace z > z0 > 0. We assume that
there is one lateral spatial dimension, denoted x; the three-dimensional case is analogous. The
source is located at (z, x) = (0, xs) and we record the reflected field at the point of observation
(z, x) = (0, xo). We again state the assumptions regarding the medium and the propagation
phenomenon in terms of Green’s function G = G(t, xs, xo). As in the one-dimensional case
we express the reflections observed at the surface z = 0 in terms of Green’s function:

u(t, xo, xs) =
∫ ∞

−∞
G(t − s, xo, xs)f (s) ds, (11)

with f being the source function.
We next describe the time-reversal experiment which is analogous to the experiment in the

one-dimensional case. However, in this case we consider different source and receiver points.
First, we use an impulsive source at the source point xs . Next, we observe the reflections at xo

in a time segment around t0 and use this segment, reversed in time, as a new source function
with source location xo. As we will show, a focused pulse will then emerge at xs a time period
t0 after re-emission. Denote the reflections associated with the impulsive source r1 by

r1(τ ) = G(t0 + τ, xo, xs).

The secondary source located at xo is

f2(t) =
{

r1(−t, 0) for t < W/2

0 else.

The reflections observed at a point in the vicinity of the original source point, (z, x, t) =
(0, xs + �x, t0 + τ), are

r2(τ, �x) =
∫ W/2

−W/2
G(t0 + s + τ, xs + �x, xo)G(t0 + s, xo, xs) ds.
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Again we seek a characterization of the second-order reflections and compute the mean
and variance for these:

E[r2(τ, �x)] =
∫ W/2

−W/2
R(s; τ, �x) ds

R(s; τ, �x) ≡ E[G(t0 + s + τ, xs + �x, xo)G(t0 + s, xo, xs)]

Var[r2(τ, �x)] =
∫ W/2

−W/2

∫ W/2

−W/2
R2(s, v; τ, �x) ds dv

R2(s, v; τ, �x) = E[X(s; τ, �x)X(v; τ, �x)]

X(s; τ, �x) = G(t0 + s + τ, xs + �x, xo)G(t0 + s, xo, xs) − R(s; τ, �x).

We now make a set of assumptions about the statistical moments of Green’s function.
Assumption (B1) below entails that the medium does not generate any strong coherent
reflections. The essential aspect of the random field G that gives refocusing of the second-
order reflections is that it decorrelates rapidly in space and time, assumption (B2) below. As
before, assumption (B3) entails that the reflections do not ‘die out’ within the time window.
The condition (B4) ensures that the centred process X(s; τ, �x) has a finite correlation length
and gives stabilization in the case that the window width is large relative to this length l:

(B1) E[G] = 0

(B2) lim
τ→∞ sup

s,�x

|R(s; τ, �x)| = 0

lim
�x→∞

sup
s,τ

|R(s; τ, �x)| = 0

(B3) 0 < C2 < R(s; 0, 0) for |s| < W

(B4) sup
s,τ,�x

∫ ∞

−∞
|R2(s, v; τ, �x)| dv = l < ∞.

These assumptions give refocusing:

Result 3. The assumptions (B1,...,3) imply that ∀δ > 0 ∃ M > 0 such that

E[r2(τ, �x)]

E[r2(0, 0)]
< δ for min(|τ |, |�x|) > M.

Therefore, at the surface z = 0 the mean reflection focuses at the original source point for
time t = t0. The support in time, (τ ), and space, (�x), of the refocused pulse will be on
the scale at which R decorrelates in these variables. The stabilization property seen in the
one-dimensional case prevails:

Result 4. The assumptions (B1,...,4) imply that√
Var[r2(τ, �x)]

E[r2(0, 0)]
� 1

C2

√
N

with N ≡ W/l.

Note that if Green’s function satisfies the reciprocity property:

G(t, xs, xo) = G(t, xo, xs),

then

R(s; τ, �x) = E[G(t0 + s + τ, xs + �x, xo)G(t0 + s, xs, xo)]

and the above assumptions correspond to Green’s function decorrelating rapidly in the source
coordinates.
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5. Acoustic waves

5.1. Refocusing in the acoustic case

In this section we consider the acoustic case with the random medium fluctuations modelled
by stochastic processes. The governing equations are the conservation laws for momentum
and mass:

ρ(x)
∂

∂t
u(t, x) +

∂

∂x
p(t, x) = 0,

1

K(x)

∂

∂t
p(t, x) +

∂

∂x
u(t, x) = 0 (12)

with p(t, x) being pressure and u(t, x) velocity. The material parameters ρ and K are,
respectively, the density and bulk modulus. We let L denote the macroscale in our problem.
This length scale corresponds to the propagation distance for the signal in between emission
and recording times. The ‘microscale’ corresponds the characteristic spatial scale at which the
medium fluctuates. We take this scale to be εL with ε a dimensionless small parameter. The
medium model is

ρ(x) =
{

ρ0

[
1 +

√
εη

( x

εL

)]
for x > 0

ρ0 else,

1

K(x)
=




1

K0

[
1 +

√
εν

( x

εL

)]
for x > 0

1

K0
else

(13)

where the random fluctuations c1 < ν < c2 and c3 < η < c4 are mean zero stationary
stochastic processes and the halfspace x � 0 is homogeneous. In section 6 we consider the
more general case when the mean density ρ0 = ρ0(x) and the mean bulk modulus K0 = K0(x)

are assumed to be differentiable functions of x. The above model is the one introduced and
analysed in [5], the difference being the factor

√
ε multiplying the random fluctuations. Thus,

we consider here a weakly fluctuating medium whereas the analysis presented in [5] concerns
a strongly fluctuating medium. The smooth, compactly supported in [0, ∞) source wavelet is

f1(t) = f

(
t

ε

)
.

Observe that we let the source pulse be supported on the microscale. Hence there will be a
strong interaction between the pulse and the microscale medium variations. The small-scale
noise in the medium model gives a non-coherent backscattering. As discussed above, these
we capture in a time window and use as a secondary source wavelet, after time reversal. In the
homogeneous halfspace we can decompose the wavefield as

u = [f1(t − x/c0) + g(t + x/c0)]/ζ0

p = f1(t − x/c0) + g(t + x/c0),

with ζ0 = √
K0ρ0 being the acoustic impedance and c0 = ζ0/ρ0 the acoustic sound velocity

in this halfspace. Thus, the initial boundary condition that gives the primary source, a left-
travelling wave pulse that strikes x = 0 at time t = 0, is

u = f1(t − x/c0)

ζ0

p = f1(t − x/c0)
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for t � tm. We write the first-order reflections generated by this source as

r1(τ ) = p(t0 + τ, 0) = [G � f1](t0 + τ),

with G being the surface Green’s function. We capture these reflections in a window and then
reverse time to get the secondary source:

f2(−t) ≡ r1(t)W(t)

with W being a window function and defined as before. The initial boundary condition with
the secondary source is

u2 = f2(t − x/c0)

ζ0

p2 = f2(t − x/c0),

for t � tm. The corresponding secondary reflections become

r2(τ ) = p2(t0 + τ, 0) = [G � f2](t0 + τ) = [G(·) � [G � f1](t0 − ·)W(−·)](t0 + τ).

This wavefield refocuses stably for small τ . We show in section 6:

Result 5. Assume that η(s) and ν(s) are bounded, stationary ergodic Markov processes, then
in probability

lim
ε→0

r2(εσ ) =
∫ ∞

−∞

∫ ∞

−∞
R̄(s, σ + v)W(s)f (v) dv ds

as in (9) and (22). The function R̄ can formally be interpreted as the covariance of Green’s
function:

R̄(s, σ ) = lim
ε→0

E[G(t0 + s + εσ )G(t0 + s)],

and is given by

R̄(s, σ ) = 1

2π

∫
ω2α̂(2ω)

(1 + ω2α̂(2ω)2(t0 + s)/tL)
e−iωσ/tL dω (14)

with tL = L/c0 and α̂ being the power spectral density of the medium fluctuations:

α̂(ω) =
∫ ∞

0
α(s) cos(ωs) ds ≡

∫ ∞

0
E

[
η(s) + ν(s)

2

]
cos(ωs) ds.

Note that the surface Green’s function therefore decorrelates on the scale ε.
Consider now the case with the medium model:

ρ(x) =
{

ρ0l
[
1 +

√
εδη

( x

εL

)]
for x > 0

ρ0 else

1

K(x)
=




1

K0

[
1 +

√
εδν

( x

εL

)]
for x > 0

1

K0
else,

with ε � δ � O(1). Thus, the medium fluctuations are weaker than in the case we considered
above. The above result prevails in this case when t0 	→ t0/δ and W(·) 	→ W(δ·). Thus, for a
homogeneous medium the shape of the refocused pulse is essentially not affected by δ if t0 is
replaced by t0/δ such that the wave penetrates deeper into the medium to compensate for the
weaker fluctuations.
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Consider finally the case with δ small and t0 fixed. Then

lim
ε→0

r2(εσ ) ∝ [α(·/2) � f ′′(·)](−σ) (15)

and in the low frequency case with f being smooth relative to the support of α:

lim
ε→0

r2(εσ ) ∝ f ′′(−σ).

5.2. Numerical illustration

The reflected acoustic field for a one-dimensional medium can be accurately calculated using
a equal travel time discretization of the medium. We show numerically calculated refocused
second-order reflections for the discretized approximation. The medium corresponds to the
following random medium model for the local speed of sound:

c2(x) = c2
0

(
1 + σ

√
εν

(
x

ε

))
,

where ν is a homogeneous Markov process with correlations

E[ν(x + �)ν(x)] = e−�x.

This model gives

R̄(s, σ ) = C(s)

[
δ(σ ) − e−|σ |/β

2β
{1 − α/4(1 − |σ |/β)}

]
(16)

with

α = t0σ
2

β = 2
√

1 + α/2.

We use an impulsive source, ε ≈ 10−3, W = 400ε and show the refocused second-order
reflections for small, medium and large values of α.

Figure 4 corresponds to the medium fluctuations being small α ≈ 0. This figure indeed
shows that the refocused pulse, corresponding to the autocorrelation for Green’s function,
essentially is, weakly, the second derivative. The broken curve is model (16) when we have
normalized the pulses in magnitude.

In figure 5 we show the case with larger medium fluctuations and α = 10. The figure
shows that the refocused pulse is close to being the impulse in this case.

The next figure, figure 6, corresponds to a relatively narrow window W = 100ε and to
a large α: α = 70. We show the refocused pulse for 20 realizations of the random medium.
We clearly see the exponential structure in the refocused pulses, but the fluctuations around
the mean shape are large. In figure 7 we show the refocused pulses with a broader window:
W = 400ε, but with the same value for α. The fluctuations have been reduced by approximately
a factor of a half, as they would according to result 2.

5.3. Result by Clouet and Fouque

For one-dimensional acoustic waves Clouet and Fouque give in [6] a nice derivation
of the focusing phenomenon based on the expressions for the moments of the field
obtained in [1]. They consider the scaling scenario where the medium fluctuations
are strong O(1) and the source function smooth relative to the scale of the
medium fluctuations. This corresponds to l � d in the notation of section 3.7.



Time reversal in a random medium 377

– 30 – 20 – 10 0 10 20 30
– 0.6

– 0.4

– 0.2

0

0.2

0.4

0.6

0.8

1

Figure 4. This figure shows the refocused pulse when the medium fluctuations are very small.
Note that the pulse is a discrete version of the second derivative operator. The broken curve is
model (16).
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Figure 5. This figure shows the refocused pulse when the medium fluctuations are larger than in
the previous figure. The pulse shape corresponds to an impulse. The broken curve is model (16).
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Figure 6. This figure displays refocused pulses for several independent realizations of the random
medium. The window width, W , is small and the fluctuations in the pulse shapes large. The full
curve is the average pulse shape.
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Figure 7. This figure displays refocused pulses for several independent realizations of the random
medium. The window width, W , is larger than in the previous figure and the fluctuations in the
pulse shapes smaller. Thus, the figure illustrates the stability in the pulse shape with respect to the
particular medium realization for large window widths. The broken curve is model (16) and the
full curve the average pulse shape.
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In the previous section we considered the case with l ≈ d and hence a stronger interaction of
the pulse with the statistics of the medium. We here connect their result to the above. Let the
governing equations be (12) with model parameters

ρ(x) =
{

(K̄/c2
0)

[
1 + η

(x

ε

)]
for x > 0

(K̄/c2
0) else,

K(x) ≡ K̄

and initial source function

f1(t) = f

(
t√
ε

)
.

It is shown in [6] that the second-order reflections can then be expressed as

lim
ε→0

E[r2(t0 +
√

εσ )] =
∫ ∞

−∞
e−iωσ f̂ (ω)[�(ω, t) � G(t)](t0) dω (17)

with

�(ω, t) = ω2α̂(0)

(1 + ω2α̂(0)t0)2
. (18)

This expression can be rewritten in the form (9) with R the transform of � and with the long
wavelength limit of (14) matching the weak noise limit of (17).

5.4. Connection to localization

The form

ω2σ 2

(1 + ω2σ 2t0)2
(19)

for the local power spectrum of Green’s function corresponds to the above and entails that the
refocused pulse is approximately

σ 2f ′′

for t0 small. Next, we give a heuristic motivation. With small t0 mostly first-order scattering
events close to the surface contribute to the reflected signal. Consider a discrete approximation
of the medium. Then a large interface reflection coefficient of magnitude, say σ , is followed
by a second of approximately opposite magnitude, −σ . With the probing pulse being smooth
relative to the fluctuations this means that the backscattered signal scales like σf ′. The second-
order time-reversed signal thus scales like σ 2f ′′. A correction to this picture can be obtained
by recalling that the frequency-dependent localization length in the above acoustic case is
approximately

lloc = c0

2ω2σ 2
.

This suggests the following approximation for the ‘transmission loss’ for the first-order
reflections from a shallow depth L = c0t0/2:

e−L/lloc ≈ 1

1 + ω2σ 2t0
.

A local ‘reflexivity’ σω, together with this transmission loss, suggests the form (19) for the
power spectrum.
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6. Derivation for acoustic waves

6.1. Problem formulation

We summarize here the derivation of result 5 for the refocused pulse in the acoustic case with
weak medium fluctuations. The method used is the one set forth in [5] adapted to the case
with weak medium fluctuations and a probing pulse that is supported on the microscale rather
than being smooth relative to this scale. We consider the model defined by (12) and let the
parameters be defined by

ρ(x) =

 ρ0

( x

L

)[
1 +

√
εη

( x

εL

)]
for x > 0

ρ0(0) else

1

K(x)
=




1

K0(x/L)

[
1 +

√
εν

( x

εL

)]
for x > 0

1

K0(0)
else.

(20)

The mean density ρ0 and the mean bulk modulus K0 are assumed to be differentiable functions
of x. Following [5] we non-dimensionalize by setting

x ′ = x

L
p′ = p

ρ0(0)c0(0)2

t ′ = c0(0)t

L
u′ = u

c0(0)

ρ ′
0(x

′) = ρ0(x
′)

ρ0(0)
K ′

0(x
′) = K0(x

′)
K0(0)

.

After dropping primes we find in non-dimensionalized units

ρ(x)
∂

∂t
u(t, x) +

∂

∂x
p(t, x) = 0,

1

K(x)

∂

∂t
p(t, x) +

∂

∂x
u(t, x) = 0

with ρ0(x) ≡ 1, K0(x) ≡ 1 and c0(x) ≡ 1 for x � 0. Next, we Fourier transform in time as

û(ω, x) =
∫

eiωt/εu(t, x) dt

p̂(ω, x) =
∫

eiωt/εp(t, x) dt

and introduce the ‘travel time’ from the origin according to the smooth background medium
by

τ(x) =
∫ x

0

ds

c0(s)
.

We also decompose in left-going, A, and right-going, B, waves:

û = 1

(K0ρ0)1/4
[Ae−iωτ/ε + Beiωτ/ε]

p̂ = (K0ρ0)
1/4[−Ae−iωτ/ε + Beiωτ/ε]

with the decomposition being defined according to the smooth background medium. An
incoming impulse at x = 0 corresponds to B1(ω) = B(0; ω) ≡ 1 and then the transformed
Green’s function is Ĝ(ω) = R(0; ω) = A(0; ω), where we introduced the reflection coefficient
R = A/B. In section 6.3 we discuss further the equation and boundary conditions for R and
obtain a characterization of Green’s function G.
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6.2. First- and second-order reflections

First, let the source wavelet be

f1(t) = f (t/ε)

with Fourier transform

f̂ (ω) =
∫

eiωtf (t) dt.

This is the probing right-going source when evaluated at the origin x = 0 and corresponds to
B1(ω) = εf̂ (ω). We choose a scaling such that the source wavelet is O(1) in magnitude, but
this choice is not important as the problem is linear. The first-order reflection, the left-going
wavelet, generated by the source and evaluated at x = 0 is

r1(t) = 1

2πε

∫
Ĝ(ω)B1(ω)e−iωt/ε dω = 1

2π

∫
Ĝ(ω)f̂ (ω)e−iωt/ε dω.

We capture the reflections at time t0 and apply the window function W before we time reverse
to get the secondary source wavelet:

f2(t) = r1(t0 − t)W(−t),

which corresponds to

B2(ω) = 1

2π

∫
Ĝ(−(ω + εh))f̂ (−(ω + εh))Ŵ(h)eit0(h+ω/ε) dh.

The reflections associated with this second right-going source wavelet is, when evaluated at
x = 0,

r2(t) = 1

2π

∫
Ĝ(ω)A2(ω)e−iωt/ε dω

= 1

(2π)2

∫
Ĝ(ω − εh)Ĝ(−ω)f̂ (−ω)Ŵ(h)eiω(t0−t)/εeiht dω dh,

with Ŵ being the unscaled Fourier transform of W . We introduce next the spectrum

�(t, ω) = 1

2π

∫
E[Ĝ(ω − εh)Ĝ(−ω)]eiht dh. (21)

The mean reflected process can then be written as

E[r2(t)] = 1

2π

∫
�(t − s, ω)W(−s) ds eiω((t0−t)/ε−τ) dω f (τ) dτ.

In the next section we shall obtain an explicit expression for the power spectrum �. We
introduce also

R1(t, s) = 1

2πε

∫
�(t, ω)e−iωs/ε dω.

The expression for the mean reflected pressure is then

E[r2(t)] = ε

∫
R1(t − s, t − t0 + ετ)W(−s) ds f (τ ) dτ

=
∫

R1(t − s, t − t0 + τ)W(−s) ds f1(τ ) dτ.

It follows from the result of the next section that R1 has support O(ε) in its second argument
which is the scale of the correlation length of the medium. Thus, only if t − t0 = O(ε) will
we see a refocused pulse. For t = t0 + εσ we find

E[r2(t0 + εσ )] =
∫

R1(t0 + εσ − s, εσ + τ)W(−s) ds f

(
τ

ε

)
dτ. (22)
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Thus, first the statistics of the ‘locally stationary’ covariance of Green’s function is averaged
with respect to the window function, then this mean covariance is averaged with respect to the
source wavelet. The source wavelet is chosen to be supported on the scale at which Green’s
function decorrelates. Formally we have

R1(t0 + t, s) = E[G(t0 + t)G(t0 + t − s)] = R(t, −s)

with R defined as in (6). Hence

E[r2(t0 + σ)] =
∫ ∞

−∞

∫ ∞

−∞
W(s + v)R(s, σ + v)f1(v) dv ds,

which is (9).

6.3. The power spectrum

We summarize here how the expression for �(t, ω) introduced in (21) can be derived. This
expression, corresponding to the autocorrelation of the surface Green’s function, defines the
(mean) shape of the refocused pulse. In the next subsection we discuss stabilization (i.e. the
random fluctuations in the refocused pulse are small). The argument as presented here is
formal. However, steps involving interchange of limits and choice of boundary conditions can
be made rigorous using the method of functionals introduced in [5, 12].

We seek an expression for

R̂(ω, h) ≡ E[Ĝ(ω − εh/2)Ĝ(ω + εh/2)].

Then

�(t, ω) = 1

2π

∫
R̂(ω − εh/2, h)eiht dh ∼ 1

2π

∫
R̂(ω, h)eith dh as ε ↓ 0. (23)

Recall that Ĝ(ω) = R(0; ω), with R = A/B being the reflection coefficient introduced above.
From (12) and (20) it follows that the equations for the ‘right/left-going’ amplitudes are

d

dx

[
A

B

]
= iω√

ε

(
ρ0

K0

)1/2 [ −m −ne2iωτ/ε

ne−2iωτ/ε m

] [
A

B

]

+
1

4

(K0ρ0)
′

(K0ρ0)

[
0 e2iωτ/ε

e−2iωτ/ε 0

] [
A

B

]
with

m = (η + ν)/2

n = (η − ν)/2.

This gives a Ricatti equation for the reflection coefficient:

dR

dx
= −iω√

ε

(
ρ0

K0

)1/2

[ne2iωτ/ε + 2mR + nR2e−2iωτ/ε] +
1

4

(ρ0K0)
′

(ρ0K0)
[e2iωτ/ε − R2e−2iωτ/ε].

(24)

It remains to choose boundary conditions for R. For a statistically homogeneous medium the
wave cannot penetrate to infinite depth and as in [5] we choose a ‘totally reflecting termination’
when analysing (24). That is, we write

R(x, ω) = e−iψ(x,ω)

with ψ real. This can be justified by embedding a finite section of the medium in a large
statistically homogeneous section where the wave localizes, so that asymptotically R has unit
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modulus, and finally truncate by a homogeneous section where a physical boundary condition
for R can be imposed. This we can do without changing the solution due to hyperbolicity
of the original problem. The method of functionals referred to above does not require such
assumptions about the whole medium as it works in the time domain.

Let ψ1,2(x, ω) = ψ(x, ω ∓ εh/2), then

R̂ = E[ei(ψ2(0,ω)−ψ1(0,ω))]. (25)

We shall approximate this expectation by integrating with respect to the distribution of ψ2 −ψ1

in the small ε limit corresponding to scattering associated with the random medium taking place
on a very fine scale.

For � = [ψ1, ψ2] we can write

d�

dx
= ε−1F(�) + G(�), (26)

with F = [F1, F2], G = [G1, G2] and

F1 = 2ω√
ε

√
ρ0

K0
[m + n cos(ψ1 + 2ωτ/ε − hτ)]

G1 = −1

2

(ρ0K0)
′

ρ0K0
sin(ψ1 + 2ωτ/ε − hτ) − √

εh

√
ρ0

K0
[m + n cos(ψ1 + 2ωτ/ε − hτ)]

and F2, G2 defined similarly. Note that m, n have zero mean and thus F is centred with respect
to their distribution. The asymptotic theory for systems of the form (26) is well known, see
for instance [1,5,11]. In [1,11] the case with a constant background medium was considered.
Using the perturbation of generator approach as in [5] we can generalize this to the above case.
The result is that if we make the change of variables

ψ = ψ2 − ψ1

ψ̃ = 1/2(ψ2 + ψ1),

then we find that the associated infinitesimal generator in the small ε limit is

Lx(ω) = 4ω2

c2
0(x)

{
αs,n(2c0(x)ω)/2

∂

∂ψ̃
+ αc,n(2c0(x)ω)

[
1

4

∂2

∂ψ̃2

+
∂2

∂ψ2
+ cos(ψ + 2hx)

(
1

4

∂2

∂ψ̃2
− ∂2

∂ψ2

)]
+ α

∂2

∂ψ̃2

}
(27)

with

α =
∫ ∞

0
E[m(0)m(s)] ds

αc,n(ω) =
∫ ∞

0
E[n(0)n(s)] cos(ω) ds

αs,n(ω) =
∫ ∞

0
E[n(0)n(s)] sin(ω) ds.

The coefficients in (27) do not depend on ψ̃ and hence ψ is Markovian by itself. We now
specialize to the case with uniform background and c(x) ≡ 1. Then we can solve the backward
Kolmogorov equation associated with (27) explicitly:

∂V

∂x
− 4ω2αc,n(2ω)(1 − cos(ψ + 2hx))

∂2

∂ψ2
V = 0.
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In view of 25 we find that

R̂ = lim
x→∞ V (x, ψ),

when

V |x=0 = eiψ.

The limit does not depend on ψ and using (23) we get the desired result (14). The general
case with c0 = c0(x) leads to an infinite-dimensional system of equations similar to the system
derived in [5].

6.4. Stabilization

The stabilization of the refocused pulse follows as in [4,14] if we can show that the quadratic
Green’s operator R decorrelates for different frequencies:

R̂(ωa, ωb) = E[ei(ψ2(0,ωa)−ψ1(0,ωa))ei(ψ2(0,ωb)−ψ1(0,ωb))]

∼ E[ei(ψ2(0,ωa)−ψ1(0,ωa))]E[ei(ψ2(0,ωb)−ψ1(0,ωb))] as ε ↓ 0. (28)

This decorrelation entails that the second centred moment of the refocused pulse is small in the
small ε limit. If we define �2(ωa, ωb) = [ψ(ωa), ψ̃(ωa)ψ(ωb), ψ̃(ωb)], then the associated
infinitesimal generator becomes

Lx(ωa, ωb) = Lx(ωa) + Lx(ωb) − ωaωbα
∂

∂ψ̃a

∂

∂ψ̃b

.

Since the infinitesimal generator associated with �2 is the sum of the ones associated with the
single-frequency cases up to a differential term in ψ̃a and ψ̃b we find that (28) is satisfied and
that the fluctuations in the refocused pulse are relatively small.

7. Conclusions

We have analysed refocusing of time-reversed wave reflections. In this problem the presence
of several scales is important, as well as how these separate. We gave a simple interpretation of
how stable refocusing can be interpreted in terms of averaging and illustrated it with numerical
simulations. We analysed in detail acoustic waves and characterized precisely the refocusing
in this case using limit theorems for stochastic ordinary differential equations.
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